## Geomorphic & Network Context

### 2015 CHaMP Camp Advanced Workshop

Cove, Oregon – June 1<sup>st</sup>, 2015

Presenters:

BONNEVILLE

Joe Wheaton (USU) Carol Volk (SFR) Kelly Whitehead (SFR)

ISEMF



## PURPOSE OF MODULE



CRB

BASIN

# How do we get to these summary products at a network scale?



## OUTLINE

**GEOMORPHIC & NETWORK CONTEXT** 

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition
- IV. Recovery Potential

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

### WHY THE NETWORK SCALE?



CHaMP

- CHaMP Sample Sites don't cover everywhere we care about
- What about in my watershed, on my stream?
  - Maps that are:

40

- Data driven
- Model informed
- Use best available science
- Take into account the constraints
- Resolved at a scale that
  matters to on the
  ground implementation



### HOW DO YOU PRIORITIZE IMPROVEMENT ACTIONS?

- For specific threats, you need assessments of :
  - Condition
  - Limiting Factors
  - Recovery Potential
- To inform:
  - Strategic Plan
  - Detailed Designs & Implementations
- Stakeholder Informed...
- BUT avoid just opportunistic...









### SUMMARY PRODUCTS



### WHAT MAKES A SUMMARY PRODUCT?

#### **EXAMPLES OF PRODUCTS**



Number of Products

Direct answers to key management questions! Includes interpretation & value judgement.



### CONVEYED AS EASY-TO-INTERPRET MAPS & GRAPHICS...





## **ASSUMPTIONS & PREMISE**

- You can't meaningfully upscale fish habitat relationships without geomorphic context
  - Inclusive of reach types & condition

CHaMP

- You can't develop realistic and appropriate tributary habitat improvement actions (e.g. restoration designs) without geomorphic context
  - Inclusive of reach types & recovery potential
- To inform whether *improvement actions* could even plausibly achieve salmonid population goals you need life cycle models with more explicit fish habitat relationships
  - Capacity estimates rely on reach type & condition, temperature & primary production

TRIBUTARY MPROVEMENT ACTIONS



### Two Primary Motivations for getting Geomorphic & Network Context

- **1. Extrapolation**: From sites on map to network scale
- Network Scale Prediction in Absence of Site-Level Data





## OUTLINE

### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition
- **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## OUTLINE

### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

### WHAT ARE GEOMORPHIC REACH TYPES?

MONTGOMERY AND BUFFINGTON





Figure 2. Schematic planform illustration of alluvial channel morphologies at low flow: (A) cascade channel showing nearly continuous, highly turbulent flow around large grains; (B) step-pool channel showing sequential highly turbulent flow over steps and more tranquil flow through intervening pools; (C) plane-bed channel showing single boulder protruding through otherwise uniform flow; (D) pool-riffle channel showing exposed bars, highly turbulent flow through riffles, and more tranquil flow through pools; and (E) dune-ripple channel showing dune and ripple forms as viewed through the flow.

### WHAT IS DISTINCTIVE?





© 2014 Google







### MANY REACH TYPING SCHEMES TO CHOOSE FROM

- Montgomery & Buffington (1997)
- 'Beechie' WRR (2014) 'Natural Channel Classification'
- Rosgen Channel Classification
- Brierley & Fryirs (2005) 'River Styles Framework'



### COMPONENTS OF A PROCEDURAL TREE

#### 264

Chapter 9



#### Figure 9.6 The River Styles procedural tree

Each River Style is identified on the basis of its planform, assemblage of geomorphic units, and bed material texture. Depending on the valley setting, different sequences of procedures are applied to identify the River Style. Modified from Brierley et al. (2002). Reproduced with permission from Elsevier, 2003.



### SPECIFIC RIVER STYLES TREE



P - - - -

Figure 9.10 The Bega catchment River Styles tree (from Fryirs, 2001)

### OTHER EXAMPLE...





**Figure 9.7** River Styles tree for a range of River Styles found in coastal NSW. Modified from Brierley et al. (2002). Reproduced with permission from Elsevier, 2003

### EXAMPLE CARTOONS OF THOSE RIVER STYLES





## NATURAL CAPACITY FOR ADJUSTMENT

- Plausible limits on what adjustments are possible
- Geomorphic context matters
  - Confinement
  - Sediment Supply

- Flow Regime
- Vegetation
- Land use
- History



### **CONTROLS ON RIVER CHARACTER & BEHAVIOR**



Catchment Area (km2) and Elevation (m)



### PROCEDURAL TREE vs. SPECIFIC TREE



#### RIVER STYLES PROCEDURATL TREE

### **RIVER STYLES TREE**



### VALLEY SETTING ENTRY POINT FORM MOST



In confined valley settings the channel abuts a confining margin >90% of its length.

In partly confined valley settings the channel abuts a confining margin 10-90% of its length.

- -- bedrock-controlled rivers have channels that abut a confining margin 50-90% of its length.
- -- planform-controlled rivers have channels that abut a confining margin 10-50% of its length.

In laterally unconfined valley settings the channel abuts a confining margin <10% of its length.

#### ABANDONED FLOOD PLAIN (TERRACE)



#### **GEOMORPHIC FORM**

An abandoned Flood Plain (Terrace) is a valley bottom, planar accumulation of stream-deposited alluvium that is no longer directly associated with the active channel. Terraces comprise a **tread**, the planar upper surface representing the relict floodplain surface; and a **riser**, the erosional slope or flank of the terrace landform. Terrace sequences can be inset within other terrace deposits forming "flights" of step-like features surrounding the active channel (see above and right).

#### **PROCESS INTERPRETATION**

Terraces form as valley-fill floodplain sediments are later eroded (incised) and remnant surfaces are left abandoned along the channel margins. Terraces can form as *cut* features, by subsequent incision of valley fill alluvium; as *fill* features that are subsequently eroded into terrace forms; or as purely erosional *strath* surfaces, etched into resistant deposits, or even bedrock of the confining canyon walls.



#### cross section of their channel showing inset and remnant terraces

#### ASSOCIATED GEOMORPHIC UNITS AND STRUCTURAL ELEMENTS

Abandoned floodplains-terraces-are closely associated with both floodplain and hillslope geomorphic units. Older, coarse terrace remnants directly overlie bedrock (above); younger, fine-grained and inset terraces underlie the contemporary floodplain and include paleochannels, channel cutoffs and banks (at left). Terraces are generally not in contact with instream geomorphic units, except where the abandoned floodplain acts as the confining boundary--in this case, the terrace riser would exhibit cutbank forms, and would supply sediment to the active channel.

#### SHALLOW THALWEG

#### Tier 1 - In-channel

#### └─ Tier 2 - Concavity (In-channel cross section)

| Key Attributes to Differentiate Specific Morphologies |                                |                |               |                                   |
|-------------------------------------------------------|--------------------------------|----------------|---------------|-----------------------------------|
| GU Forcing                                            | Low Flow Relative<br>Roughness | GU Orientation | GU Position   | Low Flow Water<br>Surface Slope   |
| Forced by planar GU or occasionally bars              | Varies                         | Streamwise     | Bank-Attached | Varies, but typically<br>moderate |

#### GEOMORPHIC FORM



A *shallow thalweg* is an in-channel concavity found on the outside bend of a channel that is distinctive because although it shows a modest concave cross section, longitudinally it lacks a concave profile or residual pool. A thalweg is defined as the line that traces the deepest part of the channel (not a unit). *Shallow thalwegs* are concavities that surround the thalweg, are found along an outside channel margin (i.e. bank-attached), oriented streamwise and are subtly forced by planar geomorphic units and occasionally low amplitude *bars*.

**DEFINITION KEY** 

Asotin River, Washington



#### TYPICAL CONFIGURATIONS

Shallow thalwegs are typically found along the banks of the outside bends of relatively straight channels with low sinuosity, where the main channel is dominated by *planar* geomorphic units (e.g. *runs, glides, rapids*), or occasionally poorly defined, low-amplitude *bars*. They occupy positions where a *pool* may be expected, but this concavity lacks a residual pool of qualifying size.





The long profile of a channel associated with a *shallow thalweg,* lacking pools or residual pool features.



A long profile with riffles and pools highlighting residual pools left behind if river were drained.

#### **PROCESS INTERPRETATION**

Shallow thalwegs are typically relatively stable units formed by modest erosion in an outside bend (typically of low curvature), but not enough erosion to excavate or maintain a *pool*. They form adjacent to *planar* geomorphic units or broad *bars* that are steering the flow towards the edge of the channel and so they winnow out a thalweg where those flows are concentrated. *Shallow thalwegs* can form and are maintained most often in relatively stable channels that are transport limited (e.g. *plane-bed*). They can also form in non-transport limited situations where active *bars* or *planar* units are forcing lateral migration and bank erosion. Therein the rate of retreat is overwhelmed by deposition from the *bar*, which prevents a *pool* from fully forming (for *pools* to form in this situation would require a more resistant bank to concentrate the flow energy).

#### SIMILAR TO OR MISTAKEN WITH

Shallow thalwegs are similar to elongated bar-forced pools on outside bends and could be confused if the *pool* is weakly formed. Use a minimum mapping unit and/or minimum residual pool depth (puddle left over if river were drained) to help differentiate from a qualifying residual pool. Shallow thalwegs can also be confused with a chute, which tends to short-circuit flows either across bar or floodplain surface or along an inside bend.

### REACH TYPE MAP – MF JOHN DAY



## MANY WAYS TO SUMMARIZE





## EXERCISE: EXPLORE REACH TYPES

C:\0\_GNAT\CHaMPWorkshopLemhiGNAT.mxd

- Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers
- 3. Turn on Lemhi River Styles





## HOW WE'VE DONE THIS IN PAST...

- Desktop Analysis
- Overflights
- Fieldwork Proforma Sites & Network Spot Checks
- More Desktop Analysis
- i.e. MANUAL


## **DIFFERENCES BETWEEN SCHEMES**



In Revision. Kasprak AK\*, Hough-Snee N\*, Beechie T, Bouwes N, Brierley G, Camp R\*, Fryirs K, Imaki H, Jensen M\*, O'Brien G, Rosgen D, and Wheaton JM. Choosing the Right Tool for the Job: Comparing Stream Channel Classification Frameworks. For Submission to PLOSOne. Preprint available at: DOI: <u>10.7287/peerj.preprints.885v1</u>.

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

I. Background

#### II. Reach Types - GNAT

I. Reach Type (River Style) Tree

#### II. Valley Setting

- I. Valley Bottom
- II. Confinement
- III. Sinuosity
- III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## GEOMORPHIC & NETWORK ASSESSMENT TOOLS (GNAT)

- ArcGIS 10.1 Toolbox
- Geomorphic metric calculations
- Network management
- Flexible utilities



## **GNAT WORKFLOW**



## CREATING A USEFUL STREAM NETWORK

- National Hydrography Dataset 24k
  Flowlines
- Subset by "F Codes"



#### NHDFlowline

| Feature Type        | FCode | Description                                                                       |  |  |
|---------------------|-------|-----------------------------------------------------------------------------------|--|--|
| ARTIFICIAL PATH     | 55800 | feature type only: no attributes                                                  |  |  |
| CANAL/DITCH         | 33600 | feature type only: no attributes                                                  |  |  |
| CANAL/DITCH         | 33601 | Canal/Ditch Type agueduct                                                         |  |  |
| CANAL/DITCH         | 33603 | Canal/Ditch Type stormwater                                                       |  |  |
| COASTLINE           | 56600 | feature type only: no attributes                                                  |  |  |
| CONNECTOR           | 33400 | feature type only: no attributes                                                  |  |  |
| PIPELINE            | 42800 | feature type only: no attributes                                                  |  |  |
| PIPELINE            | 42801 | Product/water; Pipeline Type/aqueduct;<br>Relationship to Surface/at or near      |  |  |
| PIPELINE            | 42802 | Product/water; Pipeline Type/aqueduct;<br>Relationship to Surface/elevated        |  |  |
| PIPELINE            | 42803 | Product water; Pipeline Type aqueduct;<br>Relationship to Surface underground     |  |  |
| PIPELINE            | 42804 | Product water; Pipeline Type aqueduct;<br>Relationship to Surface underwater      |  |  |
| PIPELINE            | 42805 | Product water; Pipeline Type general case;<br>Relationship to Surface at or near  |  |  |
| PIPELINE            | 42806 | Product water; Pipeline Type general case;<br>Relationship to Surface elevated    |  |  |
| PIPELINE            | 42807 | Product water; Pipeline Type general case;<br>Relationship to Surface underground |  |  |
| PIPELINE            | 42808 | Product water; Pipeline Type general case;<br>Relationship to Surface underwater  |  |  |
| PIPELINE            | 42809 | Product water; Pipeline Type penstock;<br>Relationship to Surface at or near      |  |  |
| PIPELINE            | 42810 | Product water; Pipeline Type penstock;<br>Relationship to Surface elevated        |  |  |
| PIPELINE            | 42811 | Product water; Pipeline Type penstock;<br>Relationship to Surface underground     |  |  |
| PIPELINE            | 42812 | Product water; Pipeline Type penstock;<br>Relationship to Surface underwater      |  |  |
| PIPELINE            | 42813 | Product water; Pipeline Type siphon;<br>Relationship to Surface unspecified       |  |  |
| PIPELINE            | 42814 | Product water; Pipeline Type general case                                         |  |  |
| PIPELINE            | 42815 | Product water; Pipeline Type penstock                                             |  |  |
| PIPELINE            | 42816 | Product water; Pipeline Type aqueduct                                             |  |  |
| STREAM/RIVER        | 46000 | feature type only: no attributes                                                  |  |  |
| STREAM/RIVER        | 46003 | Hydrographic Category intermittent                                                |  |  |
| STREAM/RIVER        | 46006 | Hydrographic Category perennial                                                   |  |  |
| STREAM/RIVER        | 46007 | Hydrographic Category ephemeral                                                   |  |  |
| UNDERGROUND CONDUIT | 42000 | feature type only: no attributes                                                  |  |  |
| UNDERGROUND CONDUIT | 42001 | Positional Accuracy definite                                                      |  |  |
| UNDERGROUND CONDUIT | 42002 | Positional Accuracy indefinite                                                    |  |  |
| UNDERGROUND CONDUIT | 42003 | Positional Accuracy appoximate                                                    |  |  |

## NHD NETWORK BUILDER TOOL

- Tool developed to automatically create a network
- Script keeps appropriate "connector" segements
- User specifies how they would like "artificial paths" to be dealt with

| 3 NHD Network Builder                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set Workspace                               | NHD Network<br>Builder                              | A CONTRACT OF A |
| Select NHD Flowline                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | Creates a stream network<br>from an NHD layer based |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Select NHD Waterbodies (optional)           | on user specifications.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Select NHD Area (optional)                  |                                                     | A CARLEY A CARLES A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             |                                                     | A CARLY ME AND A STREET AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Check to subset artificial paths (optional) |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Waterbody Threshold Size (sq km) (optional) |                                                     | and - ABORTON POR ALAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Remove Attificial Paths (optional)          |                                                     | Martin Carlo Carlos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Remove Canals (optional)                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remove Aqueducts (optional)                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remove Stomwater (optional)                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remove Connectors (optional)                |                                                     | EAN IN A CAR MANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Remove General Streams (optional)           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remove Intermittent Streams (optional)      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remove Perennial Streams (optional)         |                                                     | Perennial Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Remove Ephemeral Streams (optional)         |                                                     | Weber River Watershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Output Stream Network                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OK Cancel Environments << Hide Help         | Tool Help                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | Journap                                             | N 0 5 10 20 Kilometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## STREAM NETWORK SEGMENTATION

### Main Stem vs Tributaries

### Length is important

- Generate for each attribute independently
- Compile all attributes later

### Method

1. Dissolve Network by Junctions

CHaMP

- 2. Run Stream Order tool
- 3. Dissolve by GNIS (Stream Name) and then Stream

order for upper reaches.

 Run Segmentation tool along long sections (Fluvial Corridor Tools)

### Limitations

- No "Braids"
- Stream network must be continuous

### Segmenting Polygons

## SEGMENTING POLYGONS



BONNEVILLE

СНаМР

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition
- IV. Recovery Potential

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## WHAT IS A VALLEY?





**Discontinuous Floodplain** 



From Wheaton et al. (In Review) -Geomorphology

## VALLEY BOTTOM vs. VALLEY?



Laterally-Unconfined Meandering



GEOMORPHIC UNITS (TIER 1)

Ch = Channel
 Tr= Terrace
 Fp= Floodplain
 Fa= Fan
 Hs = Hillslope

- The building blocks of a Valley?
  vs.
- The building blocks of a Valley Bottom?

## WHY VALLEY BOTTOM MATTERS?

Columbia River Basin River Styles Procedural Tree



CONFINED VS. PARTLY-CONFINED VS. LATERALLY UNCONFINED

## PLANFORM CONTROLLED VS. BEDROCK CONTROLLED



### DERIVING A VALLEY BOTTOM

#### VBET – Valley Bottom Extraction Tool





## VALLEY BOTTOM... TWO INPUTS



- Digital Elevation Model (DEM)
- Stream Network



### **DERIVING THE VALLEY BOTTOM (ORIGINAL** • Used "Fluvial Corridor" toolkit (R



CHaMP

- Used "Fluvial Corridor" toolkit (Roux et al)
- Simplifies the stream network and creates a relative (detrended DEM)
- Fills the DEM to user specified depth

#### Drawbacks:

- The uniform fill depth causes the valley to be more exaggerated toward the headwaters
- Because of this, two runs of the tool are necessary to create a wider and narrower valley
- These two valleys must then be merged together manually where a transition is appropriate
- Merging the two valleys creates a need for extensive manual editing
- Unrealistically large fill depths must be specified to accurately delineate valley bottoms lower in the watershed

### FLUVIAL CORRIDOR OUTPUTS







### DERIVING THE VALLEY BOTTOM (V-BET)



New tool, Valley Bottom Extraction Tool (V-BET) extracts valley bottom based on slope, upstream drainage area, and longitudinal location within watershed

## DO YOU SEE VALLEY BOTTOMS?



#### DRAINAGE AREA – SLOPE REGRESSION



Salmon River Watershed

Drainage Area (sq km)



### V-BET TOOL & OUTPUT

| Set Workspace                       | Valley-Bottom                           |        |
|-------------------------------------|-----------------------------------------|--------|
| Select DEM                          | Uses a DEM and stream                   |        |
| Select Stream Network               | network to extract the<br>valley bottom |        |
| Flow Accumulation Raster (optional) |                                         |        |
| Output Feature Class                |                                         |        |
| Large Buffer Size                   |                                         |        |
| Medium Buffer Size                  |                                         |        |
| Small Buffer Size                   |                                         |        |
| Minimum Buffer Size                 |                                         |        |
| Minimum Aggregation Distance        |                                         |        |
| ● Minimum Area                      |                                         |        |
| Minimum Hole Size                   |                                         | Sala L |
| *                                   | Ψ.                                      | Last - |
| OK Cancel Environments << Hide Help | Tool Help                               | in the |



RONNENALLE ISEMP CHaMP

### FLUVIAL CORRIDOR VS V-BET



### EDITED V-BET OUTPUT





## EXERCISE: VBET

C:\0\_GNAT\CHaMPWorkshopLemhiGNAT.mxd

- Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers
- 3. Turn on the Valley Bottom Layer





### WHERE VBET HAS BEEN RUN



- Middle Fork John Day Wenatchee
- South Fork John Day Entiat
- Lemhi

SEM

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition
- **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## **CONFINEMENT TOOL**

 Uses Confining Margin to generate Confinement

#### Input Data

- Valley Polygon
- Stream Channel Polygon
  - Bankfull, with buffer
  - Stream Network, segmented, approximately the centerline

Valley bottom polygon



Stream Channel polygon



## **CONFINEMENT TOOL**

Intersects Valley and Channel Polygons

to find Confining Margins





## **CONFINING MARGINS**

Transpose Confining Margins to Stream Network

Split By Segments

**Calculate Confinement** (Left, Right, Both banks or none)

Retain spatial location of confinement

CHaMP

SEM





## HERE'S THE ACTUAL TOOL...

| 💐 Valley Confinement 🗕 🗖 🌅                         | <b>×</b> |
|----------------------------------------------------|----------|
| • Input Segmented Stream Network                   | ^        |
| ▼ 🖻                                                |          |
|                                                    |          |
| • Input Channel Polygon                            |          |
| Output Line Network Confinement Feature Class      |          |
|                                                    |          |
| Output Confinement by Segments Feature Class       |          |
|                                                    |          |
| Calculate Confinement for each Segment? (optional) |          |
| Channel Polygon Is Already Segmented? (optional)   |          |
| Scratch Workspace (optional)                       |          |
| Maximum Cross Section Width (Meters) (optional)    |          |
| 200                                                | $\vee$   |
| OK Cancel Environments Show Help >>                | >        |

ISEMP

## **CONFINEMENT OUTPUTS**

#### Outputs:

- Confining Margins (new)
- Confinement Along Network
- Confinement Along Segments





## EXERCISE: CONFINEMENT

 $C: \ GNAT \ CHaMPWorkshopLEMHIGNAT.mxd$ 

- Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers
- 3. Turn on one of the Confinement Layers



## CONFINEMENT SENSITIVITY TO LENGTH



Percent confinement in watershed



## WHERE CONFINEMENT HAS BEEN RUN



• Middle Fork John Day • Lemhi



# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

I. Background

### II. Reach Types - GNAT

I. Reach Type (River Style) Tree

#### II. Valley Setting

- I. Valley Bottom
- II. Confinement
- III. Sinuosity
- III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# SINUOSITY

- Straight: 1 - 1.05
- Low  $\bullet$ Sinuosity: 1.06 - 1.3
- Sinuous / Meandering: 1.3 - 3.0

ISEMF

CHaMP



(a) Number of channels

#### (b) Sinuosity

#### Degrees of sinuosity (modified from Schumm, 1985) 1-1.05 (straight) 1.06 - 1.30(low sinuosity) 1.31 - 3.0(sinuous / meandering)

(from Church, 1992)



regular meanders





#### (c) Lateral stability



thalweg shift

Degree of braiding

(from Schumm, 1985)







mostly islands ong and narrow
## WHY SINUOSITY MATTERS

Columbia River Basin River Styles Procedural Tree







# PLANFORM CONTROLLED VS. BEDROCK CONTROLLED



# SINUOSITY

Basic sinuosity calculation on pre-segmented stream network.



## LEVERAGING DATA FROM MULTIPLE NETWORKS

- Logistics of using all this great information involves getting information into the same network space
- BUT It's not appropriate nor practical for everyone to use the same network:
  - Question of interest Scale of data available Resolution of available data Feasibility—processing time and bang for buck Parallel development logistics



Develop the building blocks of information and then move information to the same network space



## EXAMPLE: VALLEY AND STREAM SINUOSITY

Two lines with different geometries



## EXAMPLE: VALLEY AND STREAM SINUOSITY





Valley Centerline, 300m segments

Streams, 1000m segments

Valley centerlines transferred to streams



## BUT SOME LINES HAVE GEOMETRY THAT MAKE TRANSFERS DIFFICULT

Valley centerline attributes transferred to stream network





### **CONFLUENCES & THEISSAN POLYGONS**











# EXERCISE: SINUOSITY

C:\0\_GNAT\CHaMPWorkshopMFJDGNAT.mxd

- Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers
- Turn on Channel Sinuosity
- 4. Turn off Channel Sinuosity

CHaMP

5. Turn on Valley Sinuosity



# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

I. Background

#### II. Reach Types - GNAT

- I. Reach Type (River Style) Tree
- II. Valley Setting
  - I. Valley Bottom
  - II. Confinement
  - III. Sinuosity
- III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMP



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work



#### REACH TYPING ANALYSES PLANNED FOR ENTIRE CRB



## ASOTIN WATERSHED



Manually delineated by Reid Camp (Camp 2015)

# COMING SOON TO A GNAT NEAR YOU

- Segmentation Moving Window Analysis
  - Moving windows: run tool at multiple segment lengths to identify areas that are not sensitive to segment length
  - Smart Segments (mainstem vs. tributary)
  - Reach Breaks Identification (e.g. changes in slope)
  - Smart attribute transfer (using common attributes to restrict transfer)
- Network Management

CHaMI

- Topology: Organizes up/downstream, trib junctions
  - Support Braided Segments
  - Support Discontinuities
- Probabilistic Reach Typing Tool...



# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMF

#### I. Geomorphic Condition

Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# **GEOMORPHIC CONDITION**

Using Brieley & Fryirs (2005) methods, evaluate:

- ADJUSTMENT CAPACITY
- EVOLUTION OF STREAM TYPES
- GEOMORPHIC CHANGE
   IRREVERSIBLE?
- RECOGNIZING CONDITION VARIANTS AND A REFERENCE REACH

<u>"STOPLIGHT" WATERSHED</u> <u>MAPS</u>

- INTACT REACHES
- GOOD
- MODERATE
- POOR





## CAPACITY FOR ADJUSTMENT OF EACH RIVER STYLE:

what range of geomorphic variability is possible?





Confined valley setting

Laterally unconfined valley setting



## RECOGNIZING CONDITION VARIANTS AND THEIR GU ASSEMBLAGES...

1. Indian Creek - Area of watershed heavily burned and logged. Abundant large wood jams in stream. Cobble and coarse gravel substrate, fine grained floodplain segments small or absent, floodplain consists of gravel bars and sheets.



2. Vinegar Creek - REFERENCE REACH for the CV-FPP river style. Abundant large wood form jams and create high hydraulic diversity and structurally forced bars and pools, hillslope derived coarse of the provide and the structural structural structure of the str









4. Big Creek - Discontinuous floodplain segments are fine-grained with coarse gravel substrate. Hydraulic diversity is low, channel is relatively featureless with runs and occasional rapids; natural wood is absent, lateral bars common.





Reference Reach—

- Diverse instream/floodplain GU's (bars, pools, channels)
- Structurally forced heterogeneity (abundant wood)
- Free of human development
- Healthy riparian cover



# $\mathsf{GEOINDICATORS} \to \mathsf{CONDITION}$

- Geoindicators set stage for assessment of geomorphic condition....
- Reach type specific geoindicators

| Degrees of Freedom and<br>their relevant<br>Geoindicators | Questions to be answered to assess<br>geomorphic condition of each reach of the<br>Alluvial Meandering River Style.                                                                                                                                          | Clear<br>Creek        | MF John<br>Day<br>(near<br>Bates) | MF John<br>Day<br>(Oxbow<br>area) | MF John<br>Day<br>(near<br>Bates) |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Channel Attributes (2 out of 3)                           | 3 out of 4 questions must be answered YES<br>For stream to be assessed in GOOD condition                                                                                                                                                                     |                       |                                   |                                   |                                   |
| Size                                                      | Is channel size appropriate given the catchment<br>area, the prevailing sediment<br>regime, and the vegetation character?                                                                                                                                    | ~                     | х                                 | x                                 | х                                 |
| Bank                                                      | Is the bank morphology consistent with caliber of sediment? Are banks eroding in the correct places?                                                                                                                                                         | 1                     | х                                 | x                                 | х                                 |
| Woody Debris Loading                                      | Is there woody debris in the channel or potential for recruitment of woody debris?                                                                                                                                                                           | 1                     | х                                 | 1                                 | x                                 |
|                                                           |                                                                                                                                                                                                                                                              | -                     | Х                                 | Х                                 | X                                 |
| Channel Planform (3 out of 5)                             | 3 out of 4 questions must be answered YES                                                                                                                                                                                                                    |                       |                                   |                                   |                                   |
| Number of Channels                                        | Is the channel single thread as appropriate for this<br>river style? Are there signs of change such as<br>avulsions or overbank channels forming on the<br>floodplain?                                                                                       | 1                     | 1                                 | 1                                 | х                                 |
| Geomorphic Unit<br>Assemblage                             | Are the number, type and pattern of instream geomorphic units appropriate for the sediment regime, slope, bed material and valley setting? Are key units of <i>this</i> River Style present (riffles, pools, plane bed runs & glides, cutbanks, point bars)? | *                     | x                                 | x                                 | x                                 |
| Riparian Vegetation                                       | Are the appropriate types and density of riparian vegetation present on the banks?                                                                                                                                                                           | 1                     | х                                 | ~                                 | х                                 |
|                                                           |                                                                                                                                                                                                                                                              | ✓                     | х                                 | ✓                                 | Х                                 |
| Bed Character (3 out of 4)                                | 3 out of 4 questions must be answered YES                                                                                                                                                                                                                    |                       |                                   |                                   |                                   |
| Grain Size and Sorting                                    | Is the range of sediment throughout the channel<br>and floodplain organized and distributed<br>appropriately?                                                                                                                                                | ~                     | 1                                 | 1                                 | x                                 |
| Bed Stability                                             | Is the bed vertically stable such that it is not<br>incising or aggrading inappropriately for the<br>channel slope, sediment caliber, and sinuosity?                                                                                                         | 1                     | 1                                 | 1                                 | x                                 |
| Sediment Regime                                           | Is the sediment storage and transport function of<br>the reach appropriate for the catchment? position<br>(i.e., is it a sediment transfer or accumulation<br>zone?)?                                                                                        | *                     | x                                 | 1                                 | х                                 |
| Hydraulic diversity                                       | Are roughness characteristics and the pattern of<br>hydraulic diversity appropriate for the catchment<br>position?                                                                                                                                           | ~                     | 1                                 | 1                                 | х                                 |
|                                                           |                                                                                                                                                                                                                                                              | ✓                     | ✓                                 | ✓                                 | x                                 |
|                                                           |                                                                                                                                                                                                                                                              | <ul> <li>✓</li> </ul> | Х                                 | Х                                 | Х                                 |
| Geomorphic Condition                                      | Total ticks and crosses are added for<br>each stream reach                                                                                                                                                                                                   | Good                  | Moderate                          | Moderate                          | Poor                              |

## EXPLANATION OF GEOMORPHIC CONDITION

| Degree of<br>Freedom  | Cood Condition                                                                                                                                                                                                                                                                                                                                                                                                                | Moderate Condition                                                                                                                                                                                                                                                                                                                                                                                                                                        | Poor Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel<br>Attributes | Steep-sided asymmetrical cross section within<br>a fine-grained sand to mud floodplain. Bank<br>erosion is minimal. Channel bed is free of<br>vegetation except for occasional tussock<br>grasses.                                                                                                                                                                                                                            | Steep-sided asymetric cross section within a<br>fine-grained sand to mud floodplain. Bank<br>erosion rate is correct for fine-grained<br>floodplain and steep banks, but restoration<br>projects have inserted large wood that is<br>focused only at bends, to "prevent erosion"<br>(will retard natural tendency to adjust).<br>Channel shape and size are consistent, yet                                                                               | Original channel has been dredged in<br>extensively, so width-depth ratio is uneven<br>and shape inconsistent. Channel size is OK for<br>catchment, but there are multiple channels<br>and diversions. Banks have been armored<br>with coarse bed material, creating uneven<br>erosion rates and characteristics.                                                                                                                                                                                                  |
| Channel<br>Planform   | Irregular, moderate to high sinuosity planform,<br>well-connected to floodplain, occasional<br>overbank crevasse-splays and channel cutoffs<br>developed. Riparian vegetation consists of<br>scattered woody stands with rich grass cover<br>on floodplain, partly influencing meander<br>development. Abundant recruitment of woody<br>debris plays role in channel shape and sinuosity<br>as well as forcing bars and pools | bank erosion is irregular as indicated by a<br>greater abundance of channel margin tussock<br>stands<br>irregular, moderate to high sinuosity planform,<br>adjustment is gradual on scale of decades, not<br>years; well-connected to floodplain, channel<br>cutoffs developed. Riparian vegetation is very<br>scattered with few woody stands, but rich grass<br>cover on floodplain. Emplaced wood is<br>abundant through the restoration reach, but is | Planform has been truncated and straightened<br>to accommodate placer mining activites. New<br>channels were dug, making the number and<br>shape of channels inappropriate for the<br>catchment size. Sinuosity is correct where the<br>natural channel trace is preserved, but flow<br>characteristics are affected by multiple<br>channels and ponds. Geomorphic units are<br>appropriate in original channel, but are<br>restricted to featureless plane bed where<br>dredging has occurred. Channel-floodplain |
| Bed                   | Segregated, bi-modal sediment mix, with channel bed composed of coarse gravel and                                                                                                                                                                                                                                                                                                                                             | distributed only at bends and not likely to play<br>a role in channel shape and sinuosity as well as<br>forcing bars and pools. Bed is stable. Geomor-<br>phic units are not well-developed, as<br>restoration was recent.                                                                                                                                                                                                                                | connectivity is impossible owing to levee of<br>coarse, dredged bed material now placed on<br>banks. Artificial backwaters and ponds<br>produced by disruption of tributary access to<br>mainstem Middle Fork John Day River.                                                                                                                                                                                                                                                                                      |
| Material              | cobble; coarse sediment projects beneath<br>Floodplain composed of fine sand, silt and<br>mud.                                                                                                                                                                                                                                                                                                                                | cobble; coarse sediment forms planar<br>geomorphic units, with little diversity (pool-rif-<br>fle sequences and cutbanks )                                                                                                                                                                                                                                                                                                                                | channel was not directly dredged. Integrated coarse gravel and cobble substrate.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | Camp Creek, Middle Fork John Day Watershed                                                                                                                                                                                                                                                                                                                                                                                    | Middle Fork John Day River                                                                                                                                                                                                                                                                                                                                                                                                                                | Middle Fork John Day River Near Galena, OR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Important 'cause it sets the stage for informed restoration/rehabilitation efforts, AND Helps avoid misdirected manipulation of geomorphic attributes

# HISTORIC RECONSTRUCTION

Low-moderate sinuosity gravel bed river style - unconfined valley, low to moderate sinuosity planform

Variants of each river style show departure from the *intact, pristine condition*.

*Evolution diagrams* trace effects of impacts or pathways of geomorphic change.

CHaMP

silt and mud

silt and fine sand



fine sand and grave

slopewash colluvium

engineered fill

## **GEOMORPHIC CONDITION MAP**

**Eight Mile Creek** Middle Fork John Day 610 kilometers 4110 kilometers 0.5% 1% 12% 20% 13% **Big Creek** 927 kilometers 2% 12% Camp Creek 1076 kilometers 1% 15% Long Creek 927 kilometers Bridge Creek 0.4% 2 % 564 kilometers 12 % 3%~ /0.3% 25% Geomorphic Condition streams Intact Good Moderate Poor 12 18 24 **30 Kilometers** 0 6

CONDITION MAPS

## GEOMORPHIC CONDITION SUMMARY



HUC 10 Watersheds

Stream Length (km)



# EXERCISE: EXPLORING GEOMORPHIC CONDITION

C:\0\_GNAT\CHaMPWorkshopMFJDGNAT.mxd C:\0\_GNAT\CHaMPWorkshopLemhiGNAT.mxd

- Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers

CHaMI

Turn on
 \*\_RiverStyles\_Geo morhpic Condition





# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- **II.** Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# RIPARIAN VEGETATION CONDITION ASSESSMENT (PROCESS)

- Inputs:
  - 1. LANDFIRE Existing Vegetation Type (EVT) representing current (2012) vegetation
  - 2. LANDFIRE Biophysical Settings (BpS) estimated pre-settlement condition

Coding:

- 1. Native riparian vegetation classes coded as a 1
- 2. All other land cover classes coded as a 0



# RIPARIAN VEGETATION CONDITION ASSESSMENT (PROCESS)

Condition is based on the **deviation from the pre**settlement condition.

- A dimensionless **ratio** was calculated: *(mean EVT vegetation value)/(mean BpS vegetation value).* 
  - Values closer to 0 represent degraded condition
  - Values near 1 represent good condition
  - Values of **1 or above** represent **intact** condition

Output: Basin-wide reach level (1 km) condition assessment map.



## Existing



Riparian

## Potential/Historic



✓ Stream

Non-Riparian

Riparian

## RIPARIAN VEGETATION CONDITION ASSESSMENT (DRAFT RESULTS)



ISEMI

## RIPARIAN VEGETATION CONDITION ASSESSMENT (POOR COND.)



- 0 0.25
- 0.25 0.7
- \_\_\_\_\_ 0.7 1
- Weber River Watershed

МР СНаМР

# RIPARIAN VEGETATION CONDITION ASSESSMENT (DRAFT RESULTS)

СНаМР



# RIPARIAN VEGETATION CONDITION ASSESSMENT (GOOD COND.)


## RIPARIAN VEGETATION CONDITION ASSESSMENT (DRAFT RESULTS)

СНаМР



## RIPARIAN VEGETATION CONDITION ASSESSMENT (MIXED)



СНаМР

## RIPARIAN VEGETATION CONDITION ASSESSMENT (DRAFT RESULTS)

СНаМР



## RIPARIAN VEGETATION CONDITION ASSESSMENT (MIXED)



### RIPARIAN CONVERSION ASSESSMENT (PROCESS)

• The Bps and EVT lookup rasters are added together.

- The pixel values in the new raster represent the type of conversion (i.e. conifer encroachment, conversion to agriculture)
- The number of each type of conversion pixels is counted
- Each polygon is represented by the conversion type with the majority of pixels within it



#### **Cause of Riparian Conversion**

Conifer Encroachment
 Developed Riparian Zone
 Non-Riparian to Riparian
 Riparian (no change)
 Riparian Converted to Agriculture
 Riparian to Introduced Upland
 Riparian to Sparsely Vegetated
 Upland Encroachment

### RIPARIAN CONVERSION (AGRICULTURE / URBAN EXAMPLE)

#### **Cause of Riparian Conversion**

Conifer Encroachment Developed Riparian Zone Non-Riparian to Riparian Riparian (no change) Riparian Converted to Agriculture Riparian to Introduced Upland Riparian to Sparsely Vegetated Upland Encroachment

N

## **RIPARIAN CONVERSION**

#### **Cause of Riparian Conversion**

Conifer Encroachment
 Developed Riparian Zone
 Non-Riparian to Riparian
 Riparian (no change)
 Riparian Converted to Agriculture
 Riparian to Introduced Upland
 Riparian to Sparsely Vegetated
 Upland Encroachment

## RIPARIAN CONVERSION (MINIMAL CHANGE EXAMPLE)

#### **Cause of Riparian Conversion**

Conifer Encroachment
Developed Riparian Zone
Non-Riparian to Riparian
Riparian (no change)
Riparian Converted to Agriculture
Riparian to Introduced Upland
Riparian to Sparsely Vegetated
Upland Encroachment

N

## Rip





## EXERCISE: EXPLORING PRELIMINARY RIPARIAN CONDITION

C:\0\_GNAT\CHaMPWorkshopLemhiGNAT.mxd

- 1. Make sure you have some context turned on (e.g. hillshade or NAIP)
- 2. Turn off other network layers
- Turn on only Riparian Condition First
- 4. Next Explore Conversion Type

CHaMI





### WHERE RIPARIAN CONDITION HAS BEEN RUN



- Middle Fork John Day Wenatchee
- South Fork John Day Entiat
- Lemhi

CHaMI

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMP



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition
- **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## TO-DO

- How good a proxy is riparian condition for geomorphic condition?
- Test using manual assessments of condition in:
  - Asotin Watershed, Washington
  - Middle Fork John Day Watershed, Oregon
  - Tucannon Watershed, Washington
  - Lemhi Watershed, Idaho
  - Wenatchee Watershed, Washington
- If not good, we can manually assess in priority basins
- How does geomorphic or riparian condition contribute to habitat condition?



## **GEOMORPHIC CONDITION VS.** HABITAT CONDITION



Moderate Good 🗖

Habitat is species & lifestage specific & may include:

- Geomorphic Condition
- Temperature
- Food Availability

Stage 2 of Brierley & Fryirs (2005)

CHaMP





CONDITION



## ALTERNATIVELY, WE MIGHT UPSCALE FISH HABITAT MODEL RESULTS



WUA: **3,585 m<sup>2</sup>** Normalized WUA: **0.64** 



# POPULATION CONDITION

- A fish population exists across a fundamentally different scale than habitat actions typically take place...
- Life cycle modelling can translate capacity estimates (from habitat modelling) and survival estimates (from fish monitoring) to population estimates (Thursday)

CHaMI





FOR CONCEPTUAL PURPOSES ONLY NOT FOR DISTRIBUTION

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMI



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

### **RS STAGE THREE: RIVER RECOVERY POTENTIAL GEOMORPHIC** CONDITION

- TRAJECTORY OF CHANGE •
- POSITION IN THE CATCHMENT AND LIMITING FACTORS AND PRESSURES
- DFTFRMINF RFCOVFRY • POTENTIAL

STOP LIGHT WATERSHED MAPS







## GEOMORPHIC RECOVERY POTENTIAL



## RECOVERY POTENTIAL DRIVERS

Recovery potential driven by condition, watershed position, and development pressures





### **RECOVERY POTENTIAL MAP**



BONNEVILLE ISEMP CHaMP

## A OPPORTUNISTIC STRATEGIC PLAN...



CHaMP

FOR CONCEPTUAL PURPOSES ONLY NOT FOR DISTRIBUTION

## **EXPECTATION MANAGEMENT**



#### **Pre Habitat Condition**

+5 Years Habitat Condition



Physical responses may be detected relatively fast...



FOR CONCEPTUAL PURPOSES ONLY NOT FOR DISTRIBUTION

## COMPARING PRE AND POST CONDITION

CHaMP

#### CONDITION MAPS **Pre Population Condition** Implementation 400 Population Condition 300 Spawners Target Met 200 Indistinguishable from 100 Target **Below Target** 10 15 20 30 Years +10 Years +5 Years +20 Years FISH RESPONSE ¢ 0 Fish population responses may take longer to detect FISH RESPONSE FISH RESPONSE RESPONSE GOAL GOAL FISH

FOR CONCEPTUAL PURPOSES ONL NOT FOR DISTRIBUTION

#### **Eight Mile Watershed**

River Styles -- mostly confined valley settings Issues -- intense grazing and small farm ops. Condition -- moderate to good Recovery Potential -- High Target Condition--gradual improvement of downstream reaches through conservation PRIORITY - Conservation reach

> Big Creek Watershed -- Conservation Area River Styles -- confined and partly confined valley types

Issues -- legacy mining on mainstem MFJDR, and logging and farm operations in tributaries. Condition -- intact-moderate in the tributaries, mainstem condition ranges good to poor Recovery Potential -- high Target Condition--extend the connectivity of intact and good condition reaches by continued regrowth of clearcut forests and improve salmonid habitat in stream. PRIORITY - Strategic Reach





#### Bridge Creek Watershed

River Styles -- confined and partly confined valley types

Issues -- legacy of logging and mining but retains a healthy salmonid population Condition -- Intact and good high in the watershed, but fair to poor throughout due to paved highway and redirection of creek through culverts. Good in isolated section in mid-canyon; fair at mouth. Recovery Potential -- moderate to High Target Condition--extend the connectivity of good condition reaches and improve condition of unconfined reaches near mouth through floodplain restoration and increased channel roughness with LWD. PRIORITY -- Strategic Reach. Must continue restoration work here to improve floodplain vegetation, channel habitat, and natural patterns of channel adjustment currently being retarded by instream structures.

#### Long Creek Watershed

River Styles -- confined and partly confined valley types

Issues – upland grazing and ranching operations Condition – intact and good high in the watershed, good to moderate throughout due to sustained and widespread land use. Recovery Potential – good to moderate Target Condition--extend the connectivity of good condition reaches and improve condition of heavily farmed and overstraightened reaches. PRIORITY – Conservation Reach and monitor



#### Middle Fork John Day River

River Styles -- unconfined and partly confined valley types Issues -- legacy of intense placer mining, Condition -- poor due to dredging, disrupted channel, discontinuous ponding Recovery Potential -- Low Target Condition--create new channel, re-contour floodplain and establish continuity with channel, improve rehabilitation of down-stream reaches. PRIORITY - Strategic Reach

# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

## **RIPARIAN RECOVERY POTENTIAL**

- In the works...
- How do anthropogenic realities constrain restoration & recovery potential?
- Order of difficulty:
  - Urban Development
  - Mining
  - Interstates/ Railroads
  - Invasive Species

- Arabale Agriculture
- Grazing



# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### **IV. Recovery Potential**

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work

# LETS TALK ABOUT...

- Cheap & Cheerful Restoration
  - Because you don't have endless budgets and the spatial scope of your problems are extensive
- One example involving a rodent...







OUT in Idaho, the Department of Fish and Game is teaching eager beavers to yell "Geronime!" These busy little creatures are being dropped by parachute to terrain where they can do their bit in the conservation battle.

Idaho state caretakers trap unwanted beavers which may be a nuisance in certain areas, round them up at central points and pack them in pairs in specially constructed wooden crates. After they are dropped, the boxes remain closed as long as there's some tension on the parachute shrouds but pull open as soon as the chute collapses on the ground. Then, out crawl Mama and Papa beaver, ready to start work. After they're settled, the 40-pound,

After they're settled, the 40-pound, web-footed rodents multiply and become outpost agents of flood control and soil conservation. Fur supervisor John Smith reports that in carefully observed early operations, the beavers headed straight for water and started building a new dam within a couple of days.

However, one problem still remains to be solved—a question of ethics more than conservation. Are these eager beavers bona fide members of the Caterpillar Club?

 Boxed for travel, this beaver is placed in a crate designed by Scotty Heter, left.
 Rubber bands pull the box apart when the chute hits the ground, freeing the animals.
 Heading for water, the airborne beavers start working like beavers on their new dam.







### PERCEIVED + IMPACTS OF DAM BUILDING

#### **Beaver and Climate Change Adaptation in North America** A Simple, Cost-Effective Strategy

WILDEARTH GUARDIANS Grand Canyon Trust The Lands Council



CHaM

- Slow snowmelt runoff
- Create ponds, wetlands & critical habitat for fish, amphibians, small mammals, vegetation
- Increased groundwater recharge/ elevated water tables
- Dam complexes increase system roughness & resilience
- Increased LWD
- Change timing, delivery and storage or water, sediment and nutrients

### **POPULARITY GROWING RAPIDLY RECENTLY**





relace shartonlares merethin canot in no

## SOME THINGS TO THINK ABOUT ...

- The ecosystem engineer is very experienced
- Most the species we care about have co-evolved with this engineer
- The science is conceptually solid... but fairly qualitative
- Precautionary Principle?

CHaMP

 The cost is one of the most compelling arguments from a restoration perspective



The River Discontinuum: Apply Beaver Modifications to Baseli Conditions for Restoration of Excessed Headwaters

#### Indicated value 4 hate 2000 in Wei (addryveldenfilmaly units) TKK 10.100

Beaver dams, hydrological thresholds, and controlled fl as a management tool in a desert riverine ecosystem. I Williams River, Arizona

Douglas C. Andersen: " and reactive in control and interaction and and the second control in the and part cases reason on the second of the second and and the second sec

#### ABSTRACT

An example of the strength of

control of the second secon

some in bolds is some anterna til predate in me Kank Anne in some distant and som er kinka Erer Store, bullet med ander in some anterna anterna some anterna bester er som anterna some anterna some anterna some anterna some anterna bester er som anterna some antern

total Control Control, but the Control Control

### WHY SHOULD YOU CARE ABOUT BEAVER?

- 1. There current capacities are high in precisely the areas you could use them a restoration agent
- They are arguably one of the most cost-effective restoration tools in your toolbox
- 3. They may actually help with the bigger, looming water resources conundrum

## **BRAT** — BEAVER RESTORATION ASSESSMENT TOOL

#### BEAVER RESTORATION ASSESSMENT TOOL BRAT UtahStateUniversity

Search this site

#### **BRAT Resources**

BRAT

- Vision
- Documentation
  - Manual Implementation of Capacity Models
  - Workshops
  - **Escalante Pilot Project**
  - Beaver Restoration Information
  - © 2013 Copyright & Disclaimers



Welcome to the BRAT website. The Beaver Restoration Assessment Tool will be a decision support and planning tool intended to help researchers and resource managers assess the potential for beaver as a stream conservation and restoration agent over large regions and watersheds.



The BRAT models can be run with widely available existing data sets, and used to identify opportunities, potential conflicts and constraints through a mix of assessment of existing resources and scenario-based assessment of potential futures. The primary backbone to BRAT are some spatial models that predict the capacity of riverscapes to support dam-building activity by

beaver. These models have been tested in a pilot project in Utah and are ready for broader implementation. The rest of the decision support tool is under development (read Vision here).







CHaM





http://brat.joewheaton.org



- Wally MacFarlane
- Martha Jensen
- Jordan Gilbert
- Jordan Burningham
### **BRAT OUTPUTS IN A NUTSHELL**

- Existing & Historic Capacities  $\rightarrow$  Potential Conflict  $\rightarrow$  Management

**Existing Beaver Dam Capacity** 



★ Actual Beaver Dams Maximum Dam Density (dams/km)







Potential for Human Beaver Conflict



#### **Probability of Conflict** 50 - 75% 0 - 10%> 75% 10 - 25%

2 Kilometers

1.5

25 - 50%

**Ecosystem Management** 



#### Beaver Management Zones

- Unsuitable: Naturally Limited Unsuitable: Anthropogenically Limited Quick Return Restoration Zone Low Hanging Fruit
- Long-Term Restoration Zone Living with Beaver (Low Source) Living with Beaver

(High Source)

#### FLOW DIAGRAM: VEGETATION CLASSIFICATION



BONNEVILLE ISEMP CHaMP

#### FLOW DIAGRAM: BEAVER DAM CAPACITY MODEL

2



### WHAT WE DID WITH BRAT...

Ran BRAT for whole state



 Created a decision support elements of BRAT in bespoke manner for UDWR







Run Model with Nationally

STATE OF UTAH (> 225,000 km<sup>2</sup>) Resolved at every 250 m long reach within State (27,000 km)



### HOW IT DOES

What you look for...

- No beaver dams where None predicted
- Low densities in 'occasional' zones
- Stable long-term dam complexes in 'frequent' or 'pervasive'
- High quality ('frequent'/'pervasive') areas as likely locations of new colonies



### EXISTING BEAVER DAM CAPACITY

- Weber Basin
  BRAT Model:
  - Max Capacity: ~ 23,477 dams Over 2358 km of streams

Avg. Max Density: 10 dams/km



### HISTORIC BEAVER DAM CAPACITY

- Weber Basin BRAT Model:
  - Max Capacity: ~ 32,409 dams Over 2358 km of streams
  - Avg. Max Density: 14 dams/km



#### CACHE VALLEY – HISTORIC VS. EXISTING





11,038 historic capacity vs. 7,402 existing capacity

### LOOKING CLOSER AT OUTPUT

#### Logan River

- Max Capacity: 7402 dams
- Currently 1313 dams
- Current average of 1.8 dams/km
- Current capacity of 10.1 dams/km



|                          | Length of  | Existing Capacity             | Historic Capacity | Existing   | Historic   | Existing   | Existing Dam          | % of Existing | % of Historic |
|--------------------------|------------|-------------------------------|-------------------|------------|------------|------------|-----------------------|---------------|---------------|
|                          | Stream     | (Density)                     | (density)         | Capacity   | Capacity   | Count      | Density               | Capacity      | Capacity      |
|                          | iGeoLength | oCC_EX                        | oCC_PT            | mCC_EX_Ct  | m_CC_PT_CT | e_DamCT    |                       |               |               |
|                          | km         | Average Dam Density (Dams/Km) |                   | Total Dams | Total Dams | Total Dams | Actual Dam<br>Density | %             | %             |
| Logan River HUC8         | 731        | 10.1                          | 15.1              | 7,402      | 11,038     | 1,313      | 1.8                   | 18%           | 12%           |
| Logan River HUC10        | 211        | 10.2                          | 15.4              | 2,146      | 3,255      | 449        | 2.1                   | 21%           | 14%           |
| └ Temple Fork HUC12      | 14         | 7.7                           | 11.3              | 108        | 158        | 42         | 3.0                   | 39%           | 27%           |
| L Beaver Creek HUC12     | 25         | 11.2                          | 16.2              | 281        | 405        | 142        | 5.7                   | 51%           | 35%           |
| □ Right Hand Fork HUC12  | 14         | 7.7                           | 11.3              | 108        | 158        | 42         | 3.0                   | 39%           | 27%           |
| L Franklin Basin HUC12   | 32.7       | 15.5                          | 17.7              | 506        | 578        | 138        | 4.2                   | 27%           | 24%           |
| └─ Red Banks Logan HUC12 | 43.2       | 11.3                          | 13.8              | 488        | 596        | 58         | 1.3                   | 12%           | 10%           |
| L Blacksmith Fork HUC 10 | 205        | 9.6                           | 13.8              | 1,968      | 2,827      | 437        | 2.1                   | 22%           | 15%           |
| ∟ Curtis Creek HUC12     | 13.5       | 8.2                           | 13.8              | 111        | 186        | 16         | 1.2                   | 14%           | 9%            |
| Rock Creek HUC12         | 26.4       | 10.3                          | 14.7              | 272        | 388        | 58         | 2.2                   | 21%           | 15%           |
| CityLogan                | 59         | 9.0                           | 20.2              | 533        | 1,192      | 4          | 0.1                   | 1%            | 0%            |

CHaM

## **RESOLUTION OF BRAT**

- At a scale that is still meaningful on the ground (250 m reaches)
- Just because BRAT predicts high capacity, does not mean it will be realized... but it does define a plausible upper limit
- In many places, at some point in time this upper limit is reached... just never all at once





#### IN SOME PLACES... THEY ARE A NUISANCE

- In residential areas they can cause flooding...
- They often block culverts, which can flood roads
- They can chop down our ornamental landscape trees
- They can make a mess of irrigation diversions









#### TRANSLOCATION

 In Utah, translocation is already allowed under UDWR's <u>Beaver</u> <u>Management Plan</u>









0 5 10 15 20 25 Miles

#### WHAT ABOUT DECLINING SNOWPACK?

 Could we get enough beaver dams back on landscape to mitigate this?



ISH/SHELL FISH DI



 We desperately need research to better quantify hydrologic impacts of beaver dams and how they scale up

#### CLIP DOWN TO JUST AREAS WITH BEAVER RESTORATION POTENTIAL

Max Capacity: ~ 13,478 dams Over 921 km of streams

Avg. Max Density: 14 dams/km



# WHERE COULD WE GET THOSE GUYS?

Living with Beaver (Low Source)

Living with Beaver (High Source)



### FUTURE & DOWNLOADS...

- We're running for as many regions as we can...
- So far, some in Idaho, Wyoming, Colorado, Utah, Nevada, Oregon, New York, New Mexico
- Discussions/proposals for Washington, Oregon, Montana, New England



For more information on BRAT, visit:

http://brat.joewheaton.org





# OUTLINE

#### **GEOMORPHIC & NETWORK CONTEXT**

- I. Background
- II. Reach Types GNAT
  - I. Reach Type (River Style) Tree
  - II. Valley Setting
    - I. Valley Bottom
    - II. Confinement
    - III. Sinuosity
  - III. Reach Typing of CHaMP Basins & CRB

#### III. Condition

CHaMP

ISEMF



Columbia Habitat Monitoring Program

- II. Riparian Condition
- III. Habitat & Population Condition

#### IV. Recovery Potential

- I. Geomorphic Recovery Potential
- II. Riparian Recovery Potential
- III. BRAT & WRAT
- V. Future Work