Strawberry Mountains (Miocene Uplift)

Development of a Rapid Geomorphic Assessment Procedure

Rattlesnake Tuff (7 ma)

Picture Gorge Basalt (17 ma)

Alan Kaspark and Joe Wheaton- Utah State University, Watershed Science Nick Bouwes- Eco Logical Research, Inc

Murderers Creek

South Fork John Day River

CHaMP site locations in the John Day Basin

Why Rapid Geomorphic Assessments

- Context for interpretation of intensive site evaluation (e.g. CHaMP)
- Extrapolation of intensive site evaluations to entire drainage network
- Describe watershed condition
- Identify and prioritize stream restoration and land management strategies
- Survey design- distribute sites in a more informed fashion (use of prior field visits)

Inherent problems with site based assessments

- Difficulty Capturing the Full Range of Basin Variability- stratification helps but need prior field-based knowledge
- Difficulty in Capturing Within-Channel Variability- the ecogeomorphic conditions found at a location are driven by upstream and local characteristics
- Difficulty in Untangling Form and Process with Snapshots- must know process regime acting to shape particular channel and know current disturbance regime

River Styles Framework (Brierley and Fryis 2005)

Figure 2: Scales of information relevant to understanding reach-scale habitat availability. Note that CHaMP collects information at the reach and unit scale and is designed to be upscaled to valley and watershed scales (but does not sample at these scales).

River Styles: Delineate streams both top-down and bottom-up hierarchical approach

MIDDLE FORK JOHN DAY RIVER, MURDERERS/BRIDGE CREEKS - PERENNIAL RIVER STYLES PROCEDURAL TREE

MIDDLE FORK JOHN DAY RIVER, MURDERERS/BRIDGE CREEKS - EPHEMERAL RIVER STYLES PROCEDURAL TREE

MIDDLE FORK JOHN DAY RIVER, MURDERERS/BRIDGE CREEKS - PERENNIAL RIVER STYLES PROCEDURAL TREE

NATURAL CAPACITY FOR ADJUSTMENT

- Plausible limits on what adjustments are possible
- Framed within context of

Middle Fork John Day River Landscape Units

River Styles on 3 watersheds in John Day Basin

Parameter	Middle Fork John Day River	Bridge Creek	Murderers Creek
Drainage Area (km^2)	2051	697	344
Mean Elevation (m)	1378	1134	1439
Max Elevation (m)	2478	2075	2204
Min Elevation (m)	664	451	896
Relief (m)	1814	1625	1308
Mean Slope (degrees)	11.7	14.3	13.8
Max Slope (degrees)	52.3	56.8	53.1
Min Slope (degrees)	0	0	0
Total Stream Length (km)	1605	501	280
Drainage Density (km/km^2)	0.78	0.72	0.81
Mean Precipitation (cm/year)	52.8	42.4	41.9
2-Year 24-Hour Peak Precipitation (cm)	2.5	2.95	2.34
Percent Forest	65.2	45.1	69.1
Percent Impervious Surfaces	0.16	0.25	0.07
Average Soil Permeability (cm/hour)	2.21	1.37	2.24

Table 1: Hydrologic parameters for the three study basins (generated using USGS StreamStats)

Picture Gorge Basalts (17 ma)

THE OWNER WITH THE PARTY OF

Big Basin Tuff (40 ma)

CARE A CONSERVE OFFICE

Fluvial Audits (on-the-ground rapid assessments)

- Gradient
- Substrate
- Pool Density
- LWD Density
- Montgomery & Buffington Reach Type
- Sediment source and sink areas (bank failures, landslide scarps, braided reaches etc)
- Valley Confinement

	Scale	Method	Processes	Forms
Coarse	Basin/Sub-Basin (103 m ²)		
Co	Suprement -	Aerial Overflights	 Hillslope Dynamics Differential Erosion Zon Vegetation Dynamics 	 Hillslope Dissection es - Drainage Density Soil Development
	Valley Segment (10 ³ m)			
		Fluvial Audit (Reach Delineation)	 Tributary Inputs Channel/Hillslope Coupling 	 Alluvial Fan/Debris Flow Presence Floodplain/Terrace Dynamics
	Channel Reach (102 m)			
	Channel Unit (10 m)	River Styles (Desktop)	 Bank Erosion Vegetation Dynamics Eco-Geomorphic Feedbacks Sediment Budget Dynamics 	 Incised Channels Large Woody Debris Jams Beaver Dams Bars/Floodplain Stratigraphy
		Fluvial Audit (Individual Reach Description)	 Patch-Scale Erosion/Deposition Vegetation Dynamics 	- Channel Substrate - Bar Forms - Pool/LWD Density
▲ Fine	Hydraulic Unit (1 m)	River Styles (Field Proforma Validation)	- Flow Field, Bed/Bank Stress	- Individual Pools/Bars - Logjams - Undercut Banks

Murderers Creek- Process zones

Murderers Creek- Confinement

Murderers Creek- Gradient

Murderers Creek - LWD

Stream Types (Montgomery/Buffington)

Murderers Creek – River Styles

MURDERERS CREEK - CONTROLS ON DOWNSTREAM RIVER STYLES PATTERN

WAYS A RIVER CAN ADJUST LOCALLY

- Adjustments (Erosion/Deposition)
 - Channel morphology
 - Channel Size
 - Channel Shape
 - Bed Character
 - Planform
 - Arrangement of geomorphic units
 - An adjustment is not a *change* in river type!
 - "River *behavior* equates to adjustments around a characteristic assemblage of geomorphic units"

FORMS OF ADJUSTMENT TO CHANNEL SHAPE

- Geomorphologists have lots of special names for things...
- Basically, all expressions or special cases of erosion or deposition

Valley setting	Bed character	Chann el morpholo gy	Chann el planform	Natural capacity for a djustment (bandwidth) and river sensitivity
Confined	Grain size, sorting, and hydraulic diversity are constrained by bedrock, restricting adjustments to local reworking of transient bedload fluxes.	Channel size, shape, and bank morphol ogy are imposed by bed roc kor ancient materials. Bank erosion is negligible. Local slope and forcing elements such as woody debris induce the pattern of geomorphic units, such as the spacing of step-pool sequences.	No potential to adjust the number of channels, sinuosity, or lateral stability. Geomorphic units are lar gely imposed forms. Riparian vegetation is not a significant control on geomorphic structure.	Limited (narrow band) Resilient
Part ly-confined	Bed often constrained by bedrock. Gravel-bed rivers have well-segregated point bars, riffles, etc. that induce significant hydraulic diversity. Surface-subsurface textural variability may be significant. Bed adjustments are dependent on material availability and the history of bedloa dtransporting events.	Channel width and shape are adjustable where floodplain pockets occur; otherwise they are constrained by bedrock or ancient materials along the valley margins. Bankerosion is restricted to areas whe re floodplain pockets occur. Instream geomorphic units adjust locally where space permits.	Local potential for lateral or downstream translation of bends, but largely constrained by bedrock. Floo dplain pockets may be prone to scour, stripping, and reformation. Adjustments are restricted to areas where floodplain pock ets occur.	Localized (relatively narrow band) Moderately resilient
	Grain size, sorting, and hydraulic diversity may be constrained by coarse sediments that armor the bed. Transient be dload fluxes induce significant local	Channelsize and shape can adjust laterally and vertically over the valley floor. Moderate potential for bank erosion. Largely bedload dominated geomorphic units.	Significant potential for adjustment to the number, sinuosity, and lateral stability of channels. May be considerablevariability in floodplain geomorphic units, with significant potential for floodplain reworking.	Moderately significant (moderately wide band) Moderately sensitive
lo	calized adjustment potential (moderately	resilient)		

 Table 5.2
 The natural capacity for adjustment of rivers in different valley settings.

Disturbance Regime

River Style	Disturbance	Disturbance Frequency	Disturbance Magnitude
Step/Cascade	Fire	Low	High
	Landslide	Low	High
Forced Meander	Fire	Low	High
	Landslide	Low	High
	Road	Regular	Moderate
Plane Bed Canyon	Landslide	Low	High
	Fire	Low	High
Imposed Form Straight	Grazing	Regular	High
Imposed Form Sinuous	Grazing	Regular	High
Pool Riffle	Grazing	Regular	Moderate
Intact Valley Fill	Fire	Low	High
Alluvial Pool Riffle	Grazing	Regular	Moderate
	Grazing	Regular	Moderate
	Roads	Regular	Moderate
	Mining	Low	High
Meadow Meandering	Flood	High	Low
	Grazing	Regular	Moderate

Table 11: Observed disturbances to each River Style across the study basins. Note that floods are a common disturbance to each River Style, and (based on their individual recurrence interval) occur with regularity or rarity and act to shape stream channels.

River Styles Framework

Priority Reaches

River Style	Adj. Potential	Current Cond.	Primary Disturbances	Priority
Step/Cascade	Low	Good	Timber Harvest	Low
Forced Meander	Low	Good	Timber Harvest	Low
Plane Bed Canyon	Low	Good	Roads	Low
Imposed Form Straight	High	Poor	Grazing, Agriculture, Sediment	High
Imposed Form Sinuous	High	Poor	Grazing, Agriculture, Sediment	High
Pool-Riffle	High	Moderate	Grazing	Moderate
Intact Valley Fill	Low	Good	Grazing	Low
Alluvial Pool-Riffle	Moderate	Moderate	Mining, Grazing, Roads	Moderate
Meadow Meandering	Moderate	Moderate	Grazing	Moderate

Table 12: Suggested restoration/management priority for River Styles across the study basins, based on the adjustment potential of each style and its current geomorphic condition.

Displaying Habitat Indicators

- Multi-scale and multi-indicator display
- Watersheds, sub-basins, and basin-scales
- Support for resource managers, expert panel members, and regional decision makers
- High-level graphic and map-based displays
- Ability to drill into the finer resolution of indicators, metrics, and measurements

* Presentation is based on limited requirements analysis. Further discussion is needed to refine requirements and scope.

Develop as a Multi-phase Approach

Phase 1 - Import habitat indicators generated by statistician and display indicators in interactive graphs and maps

- Phase 2 Automate habitat indicator calculation and importing procedures
- Phase 3 Generate fish production estimates using fish-habitat model

Phase 4 - Automate pulling fish metrics from external sources to parameterize fish-habitat models

* Presentation is based on limited requirements analysis. Further discussion is needed to refine requirements and scope.