CHaMP

Columbia Habitat Monitoring Program

Status Report to ISRP/ISAB: Update on Pilot Project

January 13, 2013

Mike Ward CHaMP Program Coordinator Terraqua, Inc.

Acknowledgments

Sponsors: Bonneville Power Administration NOAA Fisheries

Collaborators:

Columbia River Inter-Tribal Fish Commission Oregon Department of Fish and Wildlife Landowners across 9 watersheds Special Thanks: Northwest Power & Conservation Council

Independent Scientific Review Panel

CHaMP Overview

- CHaMP is:
 - A project: Bonneville Power Admin. #2011-006
 - A program: Columbia Habitat Monitoring Program
 - A protocol: standardized, salmonid habitat
 - A process: training, equipment, tools, design, sampling, data QC/QA, data management
 - A philosophy: standardization, coordination, open data sharing, timely processing and reporting

CHaMP Project

- CHaMP is a standardized salmonid habitat status and trend monitoring project across the Columbia River Basin's salmon and steelhead populations.
- Federal Columbia River Power System 2008 BiOp: prescriptions for habitat monitoring and adaptive management requirements
- Result of collaboration among BPA, the National Oceanic and Atmospheric Administration (NOAA) and other regional fish management agencies.

CHaMP Program

- Developers: NOAA, Terraqua, South Fork Research, EcoLogical Research, Sitka, QCI
- Collaborators: ISEMP, ODFW, CRITFC, CDFG, Campbell Timberlands, OSU/BLM
- Effectiveness Monitoring: Entiat, John Day, Lemhi, Umpqua, Coastal California
- Status and Trend Monitoring: Columbia Basin, Coastal California

CHaMP Program

- Standardized Training
- Standardized Protocol
- Standardized Implementation
- Standardized Data QC/QA
- Standardized Data Management and Sharing
- Flexible Objectives
- Flexible Designs
- "Flexible" Metrics/Indicators

CHaMP Protocol

- Salmonid habitat related to life history requirements of salmonids
- Salmonid habitat related to land management and stream restoration.
- Link environmental factors to measures of salmonid growth, survival and production
- Factors influencing salmonid performance: stream temperature, production, and channel morphology, channel attributes.

Topographic and Auxiliary Data Collection

2 Crew members : a Gunner and a Rod Person

1 Crew member Auxiliary Data Collection

Columbia Habitat Monitoring Program (CHaMP) Data Collection Methods – Topographic Surveys

Auxiliary Data

Channel Unit Attributes

- 1. Fish Cover
- 2. Ocular Substrate
- 3. Particle Counts
- 4. Embeddedness
- 5. Pool Tail Fines
- 6. LWD
- 7. Side Channels

Site Level Attributes

- 1. Photos
- 2. Solar input
- 3. Riparian
- 4. Temp
- 5. Discharge
- 6. Water Chemistry
- 7. Macroinvertebrates
- 8. Site Map

CHaMP Data Standardization and Sharing

Overview of CHaMP

The goal of CHaMP is to generate and implement a standard set of fish habitat monitoring (status and trend) methods in up to 26 watersheds across the Columbia River basin. The watersheds have been chosen to maximize the contrast in current habitat conditions and also represent a temporal gradient of expected change in condition through planned habitat actions. Surveys will be conducted in watersheds with perceived large juvenile life-stage survival gaps due to habitat impairments or that are home to existing high quality fish monitoring infrastructure. CHaMP implementation will occur on the spatial scale of the Technical Recovery Team (TRT) populations with the intention for inference on habitat quality and quantity at the fish population level.

CHaMP is being built around a single habitat monitoring protocol with a program-wide approach to data collection and management. More

News and Announcements

12/7/2012 CHaMP 2012 post-season workshop presentations available

The presentations from Day 1 and Day 2 of the November 27-28, 2012 post-season workshop, held in Portland, OR, are now available under 'Program' > 'Documents': see the November 2012 Workshop heading at the bottom of the Documents page. The detailed CHaMP 2012 postseason workshop final agenda is also available. More

N 🕅

all

8:32 AM

Desktop » 92%] 🦳

CHaMP Designs

- Cost effective allocation of effort
- Statistically rigorous
- Inferences over multiple spatial and temporal scales

CHaMP Designs

© 2011 - National Oceanic and Atmospheric Administration (NOAA) &, and Bonneville Power Administration (BPA) & Version 1.23.521.0 | Compiled 2011-09-15 16:55:46 | PID 6216

Designed, built, and maintained by Sitka Technology Group @

CHaMP Designs

Temporal Design Spatial Design

Category	Valley Class	Ownership	# of Sites
Depositional : Public Lands (D:Pu)	Depositional	Public Lands	1
Transport : Public Lands (T:Pu)	Transport	Public Lands	3
Source : Public Lands (S:Pu)	Source	Public Lands	5
Depositional : Private Lands (D:Pr)	Depositional	Private Lands	4
Transport : Private Lands (T:Pr)	Transport	Private Lands	2
Source : Private Lands (S:Pr)	Source	Private Lands	

Category	Valley Class	Ownership 👘	# of Sites
Depositional : Public Lands (D:Pu)	Depositional	Public Lands	2
Transport : Public Lands (T:Pu)	Transport	Public Lands	2
Source : Public Lands (S:Pu)	Source	Public Lands	4
Depositional : Private Lands (D:Pr) Depositional	Private Lands	1
Transport : Private Lands (T:Pr)	Transport	Private Lands	1
Source : Private Lands (S:Pr)	Source	Private Lands	

Rotating Panel 2		rotating panel measured every 3 years, starting in 20			
Category	Valley Class	Ownership 👘	# of Sites		
Depositional : Public Lands (D:Pu)	Depositional	Public Lands	2		
Transport : Public Lands (T:Pu)	Transport	Public Lands	2		
Source : Public Lands (S:Pu)	Source	Public Lands	1		
Depositional : Private Lands (D:Pr)	Depositional	Private Lands	1		
Transport : Private Lands (T:Pr)	Transport	Private Lands	2		
Source : Private Lands (S:Pr)	Source	Private Lands	2		

Category	Valley Class	Ownership 🐵	# of Sites
Depositional : Public Lands (D:Pu)	Depositional	Public Lands	3
Transport : Public Lands (T:Pu)	Transport	Public Lands	2
Source : Public Lands (S:Pu)	Source	Public Lands	2
Depositional : Private Lands (D:Pr)	Depositional	Private Lands	1
Transport : Private Lands (T:Pr)	Transport	Private Lands	1
Source : Private Lands (S:Pr)	Source	Private Lands	1

Download the Spatial Design Download all 4699 sites in the Wenatchee Watershed

Legend
Annual Rotating Panel 1 Rotating Panel 2 Rotating Panel 3

CHaMP Data Storage and Sharing

na Kea Weather Center 🗙 🌍 WS	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10000 C 1000 C 1000		10.002									
C https://www.champ	monitoring	.org/Watershed/E	Details/12#n	netrics									\$
C	CHa		Columbia H Aonitoring I	abitat Program		ATT		82		7	Log In H	elp	
		Home			Pro	ogram			Watersheds	a the seal of			
Home >	Watersheds	> Watershed "Upp	er Grande Ror	nde" > Details									
Watershed: Upper	Grande	Ronde (ID: 12	2)										
The Map is Hidden Click here to show the map	р.												
Overview Study Design	Field Sup	port Visits I	Measuremen	ts Metrics	Status	1						Yea	ar: 2011 💌
Metric Group: Visit Metric	Ð	Metrics Tab Watershed-level m	etrics sho	w more *									
	/isit metric re	Watershed-level m	etrics sho	w more 🔻					Ð	Metrics and C	Covariates Do	wnload	Download
Visit Metric		Watershed-level m	Crew S				/isit Site Water lumber Surface Gradient	Site Sinuosity	↓ Thalweg to Centerline Length Ratio	Metrics and C Sinuosity Via Centerline		wnload Site Bankfull Area	Download Wetted Volume
Visit Metric Currently viewing 14 of 14 v SitelD Sample	VisitID Me	Watershed-level m	Crew S	stream Panel			lumber Surface		Thalweg to Centerline Length	Sinuosity Via	Site Wetted	Site Bankfull	Wetted
Visit Metric Currently viewing 14 of 14 w SiteID Sample Date CBW05583-138554 07/13/2011	VisitID Me #	Watershed-level m cords Organization	Crew S N Local Cre S	stream Panel lame heep Cr Rotating F	Da Upper Gr	194 N	Iumber Surface Gradient	Sinuosity 1.38369	Thalweg to Centerline Length Ratio	Sinuosity Via Centerline 1.36561	Site Wetted Area	Site Bankfull Area	Wetted Volume
Visit Metric Currently viewing 14 of 14 v SiteID Sample Date CBW05583-138554 07/13/2011 CBW05583-138666 09/13/2011	VisitID Me #	Watershed-level m cords Organization	Crew S N Local Cre S Local Cre N	stream Panel lame Panel heep Cr Rotating F orth For Annual	Da Upper Gr Catherine	194 256	Iumber Surface Gradient 1 0.941 % 1 2.592 %	Sinuosity 1.38369 1.11944	Thalweg to Centerline Length Ratio 0.99539 0.95257	Sinuosity Via Centerline 1.36561 1.07495	Site Wetted Area 748.68865 2434.9298	Site Bankfull Area 1101.15 3114.66	Wetted Volume
Visit Metric Currently viewing 14 of 14 v SiteID Sample Date CBW05583-138554 07/13/2011 CBW05583-138666 09/13/2011 CBW05583-269114 08/04/2011	VisitID Me # 1 18 145 334 185 9 3 215	Watershed-level m cords Organization	Crew S N Local Cre S Local Cre N Local Cre G	heep Cr Rotating F orth For Annual irande R Rotating F	Da Upper Gr Catherine Upper Gr	194 256 216	Iumber Surface Gradient Image: Constraint of the second sec	Sinuosity 1.38369 1.11944 1.25937	Thalweg to Centerline Length Ratio	Sinuosity Via Centerline 1.36561 1.07495 1.22752	Site Wetted Area 748.68865 2434.9298 5059.86984	Site Bankfull Area 1101.15 3114.66 6927.88	Wetted Volume 151.08; ▲ 507.800 1181.16 ≡
Visit Metric Currently viewing 14 of 14 v SiteID Sample Date CBW05583-138554 07/13/2011 CBW05583-138666 09/13/2011	VisitID Me # 1000 118 145 1334 185 193 215 215 215 215	Watershed-level m cords Organization	Crew S N Local Cre S Local Cre S Local Cre G Local Cre G	stream Panel lame Panel heep Cr Rotating F orth For Annual	Da Upper Gr Upper Gr Upper Gr Upper Gr	194 256	Iumber Surface Gradient 1 0.941 % 1 2.592 %	Sinuosity 1.38369 1.11944	Thalweg to Centerline Length Ratio 0.99539 0.95257	Sinuosity Via Centerline 1.36561 1.07495	Site Wetted Area 748.68865 2434.9298	Site Bankfull Area 1101.15 3114.66 6927.88 1194.79	Wetted Volume

CHaMP Data Completion Report: Building Blocks for Management

*These totals count, only once, annual sites that were sampled in both 2011 and 2012. Altogether, 793 visits.

** Non-BPA-funded sites = 62: 19 sites in the Asotin were funded/surveyed by Washington SRSRB, 20 sites were surveyed in California by CDFG-CMP, 3 sites surveyed for USBR in Methow, 3 sites in Meacham Creek, and 17 sites in Bridge Creek.

CHAMP PROTOCOL

Riffle

RifflePo

Site Information

- Total Drift Biomass
- Riparian Structure
- Solar Input
- Alkalinity

Riffle

- Conductivity
- Temperature

Channel Unit Information

- Large wood
- Substrate type
- Undercut banks
- Fish cover

Metric Name	Group	Metric Name	Group	
Site Length Wetted		Fast-Turbulent Area		
Site Length Bankfull	Site Length	Fast-Turbulent Count		
Site Length Thalweg		Fast-Turbulent Frequency	Fast-Turbulent	
Site Water Surface Gradient		Fast-Turbulent Volume		
Water Surface Gradient Profile Filtered Mean	Gradient	Fast-Turbulent Percent		
Water Surface Gradient Profile Filtered CV	1	Site Discharge	Discharge	
Site Sinuosity	Sinuosity	Site Measurement of Conductivity	Water Chemistry	
Integrated Bankfull Width		Site Measurement of Alkalinity	water crientistry	
Bankfull Width Profile Filtered Mean	1	Drift Invertebrate Biomass Density	Invertebrates	
Bankfull Width Profile Filtered CV	Bankfull Width	Measurement of D16		
Bankfull Width Constriction Profile Filtered Mean		Measurement of D50		
Bankfull Width Constriction Profile Filtered CV		Measurement of D84	Substrate Size	
Integrated Wetted Width		Percent of Observations Less Than 2mm		
Wetted Width Profile Filtered Mean		Percent of Observations Less Than 6mm Boulder and Cobbles		
Wetted Width Profile Filtered CV	Wetted Width	Course and Fine Gravel	Substrate Distri-	
Wetted Width Constriction Profile Filtered Mean		Sand and Fines	bution	
Wetted Width Constriction Profile Filtered CV		Wetted Large Wood Frequency per 100m		
Thalweg Depth Profile Filtered Mean		Bankfull Large Wood Frequency per 100m		
Thalweg Depth Profile Filtered CV		Wetted Large Wood Volume by Site	1	
Centerline Depth Profile Filtered Mean	Depth	Bankfull Large Wood Volume by Site		
Centerline Depth Profile Filtered CV	-	Wetted Large Wood Volume in Pools	Large Woody	
Bankfull WidthToDepth Ratio Profile Filtered Mean		Bankfull Large Wood Volume in Pools	Debris	
Bankfull WidthToDepth Ratio Profile Filtered CV		Wetted Large Wood Volume in Fast-Turbulent		
Wetted WidthToDepth Ratio Profile Filtered Mean	Width to depth	Bankfull Large Wood Volume in Fast-Turbulent		
Wetted WidthToDepth Ratio Profile Filtered CV		Wetted Large Wood Volume in Fast-NonTurbulent		
Site Wetted Area		Bankfull Large Wood Volume in Fast-NonTurbulent		
Site Bankfull Area	Area	Fish Cover Composition LWD		
Wetted Volume	Volume	Fish Cover Composition Vegetation		
Site Bank Angle Mean		Fish Cover Composition Undercut	Fish Cover	
Site Bank Angle StdDev	Bank Angle	Fish Cover Composition Artificial	-	
Pool Area		Fish Cover Composition None		
Pool Count		Percent Big Tree Cover Percent Coniferous Cover		
Pool Frequency	Pools	Percent Ground Cover		
Pool Volume		Percent Non-Woody Cover	Riparian	
Pool Percent		Percent Understory Cover		
Fast-NonTurbulent Area		Percent Woody Cover		
Fast-NonTurbulent Count		· · · · · · · · · · · · · · · · · · ·	·	
Fast-NonTurbulent Frequency	Fast-NonTurbulent	70 mubliched metrice		
Fast-NonTurbulent Volume		78 published metrics, ma	iny more	
	1			

Metric and Indicators Inclusion Rule Set

• Information Content:

- Documented relationship to salmonid productivity
- Data Form:
 - Statistical information with robust data quality: repeatable, detect heterogeneity, adequate properties for modeling/statistics
- Feasibility:
 - Hardware/software that is ready for implementation
 - Three-person-day field survey at 80-90 percent of all sites likely to be encountered
 - 2012 budget constraints

CHaMP: Variability Decomposition

Crew variability as a % of (crew+julian+residual)

Caps = RBT metric; T = transformed metric; F = Filtered

Data Analysis Highlights: Optimizing Effort and Data Form

Watershed Level D50 Estimate: Standard Error of Mean by at # Sites, Cross Sections per Site, and Points Measured per Cross Section

Number of Cross Section per Site

Status and Trend Highlights

Status and Trend Highlights: Geomorphic Change Detection

Data Analysis Highlights: Reducing Effort with Remote Sensing

CHaMP

 Discussion and Questions from ISRP/ISAB

CHaMP Documenation

Overview Map People Protocol News & Announcements Documents GI5 Processing Glossary Status

The 2008 Biological Opinion (BiOp) on the Federal Columbia River Power System (FCRPS) identified implementation of tributary habitat restoration projects as a means to offset mortality imposed by the FCRPS on anadromous salmonids In 2010, the Bonneville Power Administration (BPA) began development of the Columbia Habitat Monitoring Program (CHaMP) to meet FCRPS Action Agency prescriptions for habitat monitoring (FCRPS BiOp RPA 56.3). The BPA is working with the National Oceanic and Atmospheric Administration (NOAA) and other regional fish management agencies to implement CHaMP.

The goal of CHaMP is to generate and implement a standard set of fish habitat monitoring (status and trend) methods in up to 26 watersheds across the Columbia River basin. The watersheds have been chosen to maximize the contras: in current habitat conditions and also represent a temporal gradient of expected change in condition through planned habitat actions. Surveys will be conducted in watersheds with perceived large juvenile life-stage survival gaps due to habitat impairments or that are home to existing high quality fish monitoring infrastructure. ChaMP implementation will occur on the spatial scale of the Technical Recovery Team (TRT) populations with the intention for inference on habitat quality and quantity at the fish population level.

CHaMP is being built around a single habitat monitoring protocol with a program-wide approach to data collection and management. The protocol is fish-centric, i.e., it measures habitat relevant to salmonids of interest under the BiOp. The CHaMP protocol is structured around a general understanding of the link between habitat attributes and specific life history requirements of salmonids managed under the 2008 BiOp. These fish are likely not only responding to watershed and reach conditions, but also to the conditions of individual channel units within reaches. Accordingly, the CHaMP protocol has been developed to capture habitat features that drive fish population biology.

CHaMP methods draw from many existing protocols as well as novel approaches to collecting and analyzing channel geomorphological data. The protocol is designed to maintain the rapid nature of existing stream habitat protocols, and to collect data within a geomorphological data. The protocol is designed to maintain the rapid nature of existing stream habitat protocols, and to collect data within a geomorphological hierarchy soanning multiple spatial scales, i.e., within channel unit, channel unit, geomorphic reach, watershed and subbasin scales. The protocol employs spatially continuous sampling strategies to conduct procise topographic surveys from which digital elevation models (DEMs) can be produced. These topographic surveys are augmented by other data (e.g., channel classification, fish cover, substrate composition, distribution and embeddedness, large woody debris, solar input and water temperature, stream discharge, water chemistry, riparian structure, and site-level human influence) that help to characterize aspects of channel units that influence ste-scale fish production potential.

CHaMP data will be used to evaluate the quantity and quality of tributary fish habitat available to salmonids across the Columbia River basin in wadeable, perennial streams below natural impassible barriers within TRT population boundaries. The stream habitat data generated by CHaMP will be used in conjunction with salmonid growth, survival, abundance and productivity data to estimate fish-habitat relationships and assess the impact of habitat management actions on fish population processes across the Columbia River Basin. In addition to meeting FCRPS BiOp prescriptions (RPA 56.3), CHaMP supports habitat restoration, rehabilitation, and conservation action performance assessments and adaptive management requirements of the 2008 FCRPS BiOp.

Overview

20100818 CHaMP Briefing Materials to PNAMP SC (389.4 KB) Program briefing materials	Updated on: 6/20/2011
CHaMP_SizeEvaluationProtocol_2011_20110616 (805.1 KB) GRTS, site evaluation, CHaMP, salmon	Updated on: 5/17/2011
CHaMP Site Selection Protocol (1.8 MB)	Updated on: 5/11/2011
A Header/footer (3 MB)	Updated on: 1/25/2011

© 2011 - National Oceanic and Atmospheric Administration (NOAA) &, and Bonneville Power Administration (BPA) & Version 1.23.521.0 | Compiled 2011-09-15 16:55:46 | PID 6216

Designed, built, and maintained by Sitka Technology Group @

Contact

CHaMP Resources

This protocol describes the field methodology for capturing data on fish habitat for streams in the Columbia River Basin. Version 1.1 replaces the January 25, 2011 habitat protocol document. The original version is available by request.

Updated on: 7/11/2011

CHaMP Habitat Protocol Addenda 1, July 11, 2011 (153.8 KB) This document contains clarifications to the 2011 TRAINING VERSION 1.1 of the CHaMP Habitat Protocol (Version 1.1) that have arisen since the June 1 release of that document.

CHaMP

• SCRAP follows this slide

CHaMP

Crew variability as a % of (crew+julian+residual)

Caps = RBT metric; T = transformed metric; F = Filtered

2012 Recap: Improve Data Performance and Flow

"Improved" Approach to Challenging Metrics

- -- Better Protocol and Training Improved Efficiency
- -- Improved Standardization
- -- Increased Cost of Each Survey

Improved Tools and Software

- -- Streamlined the data flow process
- -- Improved standardization
- -- Reduced overall effort; shifted work to crews

2012 Recap: Coordination With Managers

- Data Analysis Strategy Development: September 2012
- -- Continue to Develop Status and Trend Data Displays
- -- Improve Fish/Habitat Modeling with Regional Collaborators as Basis for Interpretation of Habitat Data
- -- Prepare for: Comprehensive evaluation; 2013 BiOp check-in; 2013 BiOp remand; Council MERS plan; 2015 Expert Panel process; 2018 BiOp